Our paper “Implementing Data Workflows and Data Model Extensions with RDF-star” just got accepted for the Electronic Library Journal. The research emerged collaboratively from the CAIUS and the Judaicalink project.
The paper applies three patterns for meta-layer modeling using RDF-star and Named Graphs introduced in a previous conference paper by introducing workflows respectively.
Abstract
Purpose
The purpose of this work is to explore the new possibilities enabled by the recent introduction of RDF-star, an extension that allows for statements about statements within the Resource Description Framework (RDF). Alongside Named Graphs, this approach offers opportunities to leverage a meta-level for data modeling and data applications.
Design/methodology/approach
In this extended paper, the authors build onto three modeling use cases published in a previous paper: (1) provide provenance information, (2) maintain backwards compatibility for existing models, and (3) reduce the complexity of a data model. The authors present two scenarios where they implement the use of the meta-level to extend a data model with meta-information.
Findings
The authors present three abstract patterns for actively using the meta-level in data modeling. The authors showcase the implementation of the meta-level through two scenarios from our research project: (1) the authors introduce a workflow for triple annotation that uses the meta-level to enable users to comment on individual statements, such as for reporting errors or adding supplementary information. (2) The authors demonstrate how adding meta-information to a data model can accommodate highly specialized data while maintaining the simplicity of the underlying model.
Practical implications
Through the formulation of data modeling patterns with RDF-star and the demonstration of their application in two scenarios, the authors advocate for data modelers to embrace the meta-level.
Originality/value
With RDF-star being a very new extension to RDF, to the best of the authors’ knowledge, they are among the first to relate it to other meta-level approaches and demonstrate its application in real-world scenarios.